

KU LEUVEN

F0

Ľ

ш

PARIS 7

université

Wind accretion onto compact objects

EL MELLAH lleyk with F. Casse, R. Keppens & A. Goldwurm

APC laboratory – Paris 7 Diderot CmPA – KU Leuven

Arbatax – September 2016

Introduction

Contents

Part I	Planar Bondi-Hoyle-Lyttleton accretion onto a compact object
1.	Isotropic VS axisymmetric flow
2.	Numerical simulations : state of the art
3.	Numerical setup
4.	Results → structure of the shock → sonic surface → mass accretion rate
Part II	Wind accretion in persistent Supergiant X-ray Binaries
1.	Winds of hot isolated stars
2.	Radiatively-driven winds in a Roche potential
3.	Results
Perspectives	

I. 1. Spherical flow VS planar flow

- ightarrow axisymmetric (2D)
- \hookrightarrow homogeneous flow at infinity
- ightarrow supersonic incoming flow (v_w>c_w)
- \hookrightarrow ballistic approximation (zero temperature flow)

Topological result by FOGLIZZO & RUFFERT (96) : the B-H sonic surface intersects its spherical counterpart

=> a $\gamma = 5/3$ gas admits a sonic surface anchored into the accretor

I. 2. Numerical simulations : state of the art

Large accretors

Full 3D simulations Influence of the accretor size (RUFFERT 94) Inner boundary conditions $r_{out}/r_{in} = 10^3$

$$\frac{\zeta_{\rm HL}}{R_{\rm Schw}} = \left(\frac{c}{v_{\infty}}\right)^2$$

GRHD simulations of B-H on to a black hole

Down to the event horizon

Wind velocity of 10,000 km/s

$$r_{out}/r_{in} = 10^3$$

Relativistic winds

I. 3. Numerical setup

The code

MPI-AMRVAC

- ightarrow solves the conservative equation of (M)HD
- → mesh-based finite volumes
- → openMPI parallelized
- → highly customizable

$\partial_t \left(\rho \mathbf{v} \right) + \boldsymbol{\nabla} \cdot \left(\rho \mathbf{v} \otimes \mathbf{v} + P \mathbb{1} \right) = -\rho \boldsymbol{\nabla} \Phi$

 $\partial_t \rho + \boldsymbol{\nabla} \cdot (\rho \mathbf{v}) = 0$

$$\partial_t e + \boldsymbol{\nabla} \cdot \left[(e+P) \, \mathbf{v} \right] = -\rho \mathbf{v} \cdot \boldsymbol{\nabla} \Phi$$

The setup

Grid

- → spherical 2.5D
- ightarrow logarithmically stretched => cell uniform aspect ratio
- ightarrow r_{out}/r_{in} up to 10⁵

Boundary conditions

- → outer : extension of Bisnovatyi-Kogan+79
- \hookrightarrow inner : continuous fluxes

Physical setup

Free input parameters

- ightarrow mass & velocity
- ightarrow MACH number at infinity
- \hookrightarrow adiabatic index
- → inner boundary size

I. 4. Results

Relaxed configuration

Accretion radius ζ_{HL}

Stagnation point

Bow shock

Steady-state (no instability)

I. 4. Results

I. 4. Results

Comparison w/ FR96 formula (in red)

Convergence (independent of r_{in})

Downstream amplified accretion

ò

Contents

Part I	Planar Bondi-Hoyle-Lyttleton accretion onto a compact object
1.	Spherical VS axisymmetric flow
2.	Numerical simulations : state of the art
3.	Numerical setup
4.	Results → structure of the shock → sonic surface → mass accretion rate
Part II	Wind accretion in persistent Supergiant X-ray Binaries
1.	Winds of hot isolated stars
2.	Radiatively-driven winds in a Roche potential
3.	Results → likelihood of a wind-capture disc → X-ray luminosity → self-consistent sets of parameters → the hybrid wind-RLOF regime
Perspectives	

II. 1. Winds of hot isolated stars

Photons > eV absorbed by metals => absorption line driven winds

CASTOR, ABBOTT & KLEIN (73) Reviews by KUDRITZKI & PULS (00) and PULS ET AL. (08)

Force multipliers for BO-1 la :

- $ightarrow \alpha \sim 0.45$ to 0.55 : acc. efficiency
- ightarrow Q ~ 900 : mass-loss amplitude

Non-linear acceleration term

- ightarrow ballistic assumption
- → 4th order Runge-Kutta integrator

Critical point

- → mass loss rate
- → terminal speed
- → strong **coupling** between variables

II. 2. Radiatively-driven winds in a Roche potential

Aims

- \rightarrow to explicit the relevant parameters
 - q : mass ratio (star/accretor)
 - SHAPE α : alpha force multiplier
 - Γ : Eddington factor (~luminosity)
 - f : filling factor (~radius)

P: orbital period

- M_2 : mass of the compact object
- SCALE Q: Q force multiplier
- → to produce physically motivated outer boundary conditions

Methods

- \rightarrow sample the stellar surface
- \rightarrow integrate the trajectories (RK4,3D)
- \rightarrow refine those which enter

the vicinity of the compact object

Results

Self-consistent parameters for :

- orbit (eg orbital velocity)
- \rightarrow star (eg effective temperature)
- \rightarrow wind (eg terminal speed)
- → accretion (eg mass and angular momentum accretion rates)

Physically-motivated outer boundary conditions for full 3D hydro simulations

II. 3. The likelihood of a wind-capture disc

 $\boldsymbol{\beta}$: fraction of wind accreted onto the compact object

Circularization radius (~ size of the disc) midway between :

- ightarrow the shock (HD and radiative instabilities)
- \hookrightarrow the NS (truncation at magnetosphere)

$$\frac{R_{\text{mag}}}{R_{\text{Schw}}} \sim 400 \left(\frac{0.2}{\Xi}\right)^{\frac{10}{7}} \left(\frac{B}{10^{11}\text{G}}\right)^{\frac{4}{7}} \left(\frac{M}{1.5\text{M}_{\odot}}\right)^{\frac{4}{7}} \left(\frac{L_{\text{acc}}}{10^{36}\text{erg}\cdot\text{s}^{-1}}\right)^{-\frac{2}{7}}$$

Does it correspond to the X-ray bright configurations?

II. 3. Self-consistent sets of parameters

Web data visualization tool : the WASO interface

Relates the observables to the physical parameters w/ :

- → the orbital period
- → the mass of the compact object
- → the surface gravity
- \hookrightarrow the effective temperature
- \hookrightarrow the terminal speed
- → the X-ray luminosity

II. 3. The X-ray luminosity

Explicits

→ the **dependence strengths**

→ the **degeneracies**

Terminal speed, mass outflow, etc not forced

Perspectives

Overview

- Planar axisymmetric accretion flow (B-H)
- → stable bow shock
- →anchored sonic surface
- → independence of the flow with the inner mask
- → mass accretion rates

Wind accretion in Sg HMXB

- ightarrow4 shape parameters : q, $lpha, \Gamma$ and f
- ightarrow X-ray luminosity
- \rightarrow shearing of the inflow

Perspectives

- \rightarrow optically-thin cooling
- →ionizing radiation feedback
- →pulsar magnetosphere
- → wind clumpiness
- ightarrow pulsar spin and accretion
- \rightarrow stability of the wake?
 - Time variability : link Sg HMXB / SFXT?

 \rightarrow wind – Roche lobe overflow :

hybrid accretion regimes (Cen X-3, Cyg X-1)