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tested to see if bound"
!  Bound particles added  

to reservoir"
!  Transfer from reservoir 

to BH via slim disk   "
! Set up"

!  100 M"BH in 10 pc – 1 kpc box; 
vary initial density"
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Results: BH + Disk growth  
"
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•  Parameters: 10 pc box with 104 atoms/cm3 density"
•  Mass res. : 0.8 M", Spatial res. : 0.1 pc 



Simulated BH + Disk growth  
 v. Eddington Limited growth"
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rate: 2.2$10-6 M" per yr"

avg. rate: 3.8$10-5 M" per yr 
max. rate: 9.0$10-5 M" per yr"
 

avg. rate: 7.3$10-5 M" per yr 
max. rate: 2.8$10-4 M" per yr"
 

avg. rate: 4.8$10-5 M" per yr 
max. rate: 1.4$10-4 M" per yr"
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Discussion 
! Intermediate scale Hyper-Eddington accretion 
! Growth occurs for both Z = 10-3 Z" and Z = Z" 

! Hyper-Eddington accretion in presence of stellar 
feedback 
! Turbulence and inhomogeneity do not prevent rapid 

growth  
! Realistic environment 

! 104 atoms per cm3 comparable to central density of 
ARP220  

! Only require SMBH formation once per Hubble time 
per galaxy 
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Summary 
! Study 

!  100 M" seed"
!  Intermediate scales (10pc – 1 kpc) 
!  Including stellar feedback 

! Results 
!  Initial gas density: 104  atoms per cm3 

!  10 pc box 
! Growth to 104 M" in <107 years with BH feedback, at both  

Z = 10-3 Z" and Z = Z" 
! Further Work 

!  Limit interesting parameter space 
! Higher resolution simulations 
! Observable phenomenology  
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