Small Seed Black Hole Growth in Various Accretion Regimes

Hannalore J. Gerling-Dunsmore Philip F. Hopkins TAPIR, Caltech

The SMBH formation problem

The SMBH formation problem

• BHs of mass $10^6 - 10^{10} M_{\odot}$

- The SMBH formation problem
 - BHs of mass $10^6 10^{10} M_{\odot}$
 - Observations indicate SMBH form in < 1 Gyr</p>

- The SMBH formation problem
 - BHs of mass $10^6 10^{10} M_{\odot}$
 - Observations indicate SMBH form in < 1 Gyr</p>
 - SMBH at z=7

- The SMBH formation problem
 - BHs of mass $10^6 10^{10} M_{\odot}$
 - Observations indicate SMBH form in < 1 Gyr</p>
 - BH dominates gravitational potential once $\sim 10^4 M_{\odot}$

- The SMBH formation problem
 - BHs of mass $10^6 10^{10} M_{\odot}$
 - Observations indicate SMBH form in < 1 Gyr</p>
 - $\,$ BH dominates gravitational potential once ${\sim}10^4~M_{\odot}$
- Proposed Mechanisms of SMBH Formation

- The SMBH formation problem
 - BHs of mass $10^6 10^{10} M_{\odot}$
 - Observations indicate SMBH form in < 1 Gyr</p>
 - BH dominates gravitational potential once $\sim 10^4 M_{\odot}$
- Proposed Mechanisms of SMBH Formation

Direct collapse

- The SMBH formation problem
 - BHs of mass $10^6 10^{10} M_{\odot}$
 - Observations indicate SMBH form in < 1 Gyr</p>
 - BH dominates gravitational potential once $\sim 10^4 M_{\odot}$
- Proposed Mechanisms of SMBH Formation
 - Direct collapse
 - Runaway merging

- The SMBH formation problem
 - BHs of mass $10^6 10^{10} M_{\odot}$
 - Observations indicate SMBH form in < 1 Gyr</p>
 - BH dominates gravitational potential once $\sim 10^4 M_{\odot}$
- Proposed Mechanisms of SMBH Formation
 - Direct collapse
 - Runaway merging
 - Accretion onto small seed BHs

Latif & Ferrara, 2016

Rapid accretion onto 100 M_oBHs

- Rapid accretion onto 100 $M_{\odot}BHs$
- Eddington limited

- Rapid accretion onto 100 $M_{\odot}BHs$
- Eddington limited
 - Fails to grow BH rapidly

- Rapid accretion onto 100 M_☉BHs
- Eddington limited
 - Fails to grow BH rapidly
- Super-Eddington

- Rapid accretion onto 100 M_☉BHs
- Eddington limited
 - Fails to grow BH rapidly
- Super-Eddington

Begelman 1979

- Rapid accretion onto 100 M_☉BHs
- Eddington limited
 - Fails to grow BH rapidly
- Super-Eddington
 - Compton heating shuts down growth

- Rapid accretion onto 100 M_☉BHs
- Eddington limited
 - Fails to grow BH rapidly
- Super-Eddington
 - Compton heating shuts down growth

- Rapid accretion onto 100 M_☉BHs
- Eddington limited
 - Fails to grow BH rapidly
- Super-Eddington
 - Compton heating shuts down growth
- Hyper-Eddington

- Rapid accretion onto 100 M_☉BHs
- Eddington limited
 - Fails to grow BH rapidly
- Super-Eddington
 - Compton heating shuts down growth
- Hyper-Eddington
 - 100 1000x Eddington limit

- Rapid accretion onto 100 M_☉BHs
- Eddington limited
 - Fails to grow BH rapidly
- Super-Eddington
 - Compton heating shuts down growth
- Hyper-Eddington
 - 100 1000x Eddington limit
 - Ram pressure smothers Compton heating

- Rapid accretion onto 100 M_☉BHs
- Eddington limited
 - Fails to grow BH rapidly
- Super-Eddington
 - Compton heating shuts down growth
- Hyper-Eddington
 - 100 1000x Eddington limit

- Volonteri+ 2014 Sadowski+ 2015 Inayoshi+ 2016
- Ram pressure smothers Compton heating

Goal

 Determine environment in which a small seed BH can grow via hyper-Eddington accretion to SMBH

Goal

 Determine environment in which a small seed BH can grow via hyper-Eddington accretion to SMBH

Using GIZMO (Hopkins 2012)

Goal

 Determine environment in which a small seed BH can grow via hyper-Eddington accretion to SMBH

Using GIZMO (Hopkins 2012)

3D, MHD+gravity

- Goal
 - Determine environment in which a small seed BH can grow via hyper-Eddington accretion to SMBH
- Using GIZMO (Hopkins 2012)
 - 3D, MHD+gravity
 - Accretion treatment

- Goal
 - Determine environment in which a small seed BH can grow via hyper-Eddington accretion to SMBH
- Using GIZMO (Hopkins 2012)
 - 3D, MHD+gravity
 - Accretion treatment

Goal

 Determine environment in which a small seed BH can grow via hyper-Eddington accretion to SMBH

- Using GIZMO (Hopkins 2012)
 - 3D, MHD+gravity
 - Accretion treatment

Goal

 Determine environment in which a small seed BH can grow via hyper-Eddington accretion to SMBH

- Using GIZMO (Hopkins 2012)
 - 3D, MHD+gravity
 - Accretion treatment

- Determine environment in which a small seed BH can grow via hyper-Eddington accretion to SMBH
- Using GIZMO (Hopkins 2012)
 - 3D, MHD+gravity
 - Accretion treatment
 - Particles within capture radius tested to see if bound
 - see if bound

- Determine environment in which a small seed BH can grow via hyper-Eddington accretion to SMBH
- Using GIZMO (Hopkins 2012)
 - 3D, MHD+gravity
 - Accretion treatment
 - Particles within capture radius tested to see if bound
 - Bound particles added to reservoir

- Determine environment in which a small seed BH can grow via hyper-Eddington accretion to SMBH
- Using GIZMO (Hopkins 2012)
 - 3D, MHD+gravity
 - Accretion treatment
 - Particles within capture radius tested to see if bound
 - Bound particles added to reservoir
 - Transfer from reservoir to BH via slim disk

- Determine environment in which a small seed BH can grow via hyper-Eddington accretion to SMBH
- Using GIZMO (Hopkins 2012)
 - 3D, MHD+gravity
 - Accretion treatment
 - Particles within capture radius tested to see if bound
 - Bound particles added to reservoir
 - Transfer from reservoir to BH via slim disk

Goal

 Determine environment in which a small seed BH can grow via Hyper-Eddington accretion to SMBH

particle

- Using GIZMO (Hopkins 2012)
 - 3D, MHD+gravity
 - Accretion treatment
 - Particles within capture radius tested to see if bound
 Unbound
 - Bound particles added to reservoir
 - Transfer from reservoir to BH via slim disk

Set up

 100 M_☉BH in 10 pc – 1 kpc box; vary initial density

Advances with this study

Intermediate scale

Advances with this study

- Intermediate scale

Advances with this study

- Intermediate scale
- Stellar feedback → inhomogeneous, turbulent environment

Pillars of Creation

Credit: Jeff Hester and Paul Scowen (Arizona State University), and NASA/ESA

Structure Formation due to Stellar Feedback

10 pc GIZMO simulation

Gas Structure Formation

Star Formation

Results: BH + Disk growth

- Parameters: 10 pc box with 10⁴ atoms/cm³ density
- Mass res. : 0.8 M_{\odot} , Spatial res. : 0.1 pc

Simulated BH + Disk growth v. Eddington Limited growth

Intermediate scale Hyper-Eddington accretion

Intermediate scale Hyper-Eddington accretion

• Growth occurs for both Z = $10^{-3} Z_{\odot}$ and Z = Z_{\odot}

Intermediate scale Hyper-Eddington accretion

- Growth occurs for both Z = $10^{-3} Z_{\odot}$ and Z = Z_{\odot}
- Hyper-Eddington accretion in presence of stellar feedback

- Intermediate scale Hyper-Eddington accretion
 - Growth occurs for both Z = $10^{-3} Z_{\odot}$ and Z = Z_{\odot}
- Hyper-Eddington accretion in presence of stellar feedback
 - Turbulence and inhomogeneity do not prevent rapid growth

- Intermediate scale Hyper-Eddington accretion
 - Growth occurs for both Z = $10^{-3} Z_{\odot}$ and Z = Z_{\odot}
- Hyper-Eddington accretion in presence of stellar feedback
 - Turbulence and inhomogeneity do not prevent rapid growth
- Realistic environment

- Intermediate scale Hyper-Eddington accretion
 - Growth occurs for both Z = $10^{-3} Z_{\odot}$ and Z = Z_{\odot}
- Hyper-Eddington accretion in presence of stellar feedback
 - Turbulence and inhomogeneity do not prevent rapid growth
- Realistic environment
 - 10⁴ atoms per cm³ less than central density of ARP220

ARP220

Credit:NASA, ESA, and C. Wilson (McMaster University, Hamilton, Ontario, Canada)

- Intermediate scale Hyper-Eddington accretion
 - Growth occurs for both Z = $10^{-3} Z_{\odot}$ and Z = Z_{\odot}
- Hyper-Eddington accretion in presence of stellar feedback
 - Turbulence and inhomogeneity do not prevent rapid growth
- Realistic environment
 - 10⁴ atoms per cm³ comparable to central density of ARP220
 - Only require SMBH formation once per Hubble time per galaxy

Summary

- Study
 - 100 M_{\odot} seed
 - Intermediate scales (10pc 1 kpc)
 - Including stellar feedback
- Results
 - Initial gas density: 10⁴ atoms per cm³
 - 10 pc box
 - Growth to $10^4 M_{\odot}$ in <10⁷ years with BH feedback, at both $Z = 10^{-3} Z_{\odot}$ and $Z = Z_{\odot}$
- Further Work
 - Limit interesting parameter space
 - Higher resolution simulations
 - Observable phenomenology