Thermal instability in 3D GRRMHD simulations of thin disks

Bhupendra Mishra*

Collaborators: P. Chris Fragile**; L. C. Johnson**; W. Kluźniak*

*

mbhupe@camk.edu.pl

**

Geometrically thin disk

 $H/r << 1 \longrightarrow$ challenging to simulate

$$T_{r\phi} = \alpha P_t$$

Shakura and Sunyaev, 1973 Hirose et al 2009

Radiation pressure dominated thin disk is thermally unstable Shakura and Sunyaev, 1976, Piran 1978

shearing box simulations Jiang et al 2013

Global disk setups

Radiation pressure dominated (RADP) $P_{\rm rad} >> P_{\rm gas}$ Gas pressure dominated (GASP) $P_{\rm rad} << P_{\rm gas}$

RADP
$$\rightarrow \rho_0 = 10^{-3} \text{g cm}^{-3}$$

GASP $\rightarrow \rho_0 = 10^{-6} \text{g cm}^{-3}$

RADPLR
$$(n_r, n_{\phi}, n_z) = (192 \times 32 \times 160)$$

RADPHR $(n_r, n_{\phi}, n_z) = (192 \times 64 \times 160)$
GASPLR $(n_r, n_{\phi}, n_z) = (192 \times 32 \times 160)$
GASPHR $(n_r, n_{\phi}, n_z) = (192 \times 64 \times 160)$

Radiation pressure dominated disk → Collapses Mishra et al 16

Grid and Boundary conditions constant periodic ogarithmic grid outflow logarithmic grid outflow BH outflow

Cosmos++ (Anninos et al 2005)

RADP setup

$$\rho(r,z) = \frac{\rho_0 e^{-z^2/2h^2} (1 + e^{(r-r_o)/h^2})}{1 + e^{(r_i - r)/h^2}}, \quad \rho_0 = 10^{-3} \text{g cm}^{-3}$$

Reynolds & Miller 2009

Magnetic field

Closure scheme

- M1 closure scheme
- Radiation rest frame: Radiation flux vanishes
- Satisfying Eddington approximation in radiation rest frame

Sądowski et al 14

Opacity

- Electron scattering
- Absorption (Rosseland mean opacity)
- Thermal Comptonization (without relativistic corrections)

Gas pressure dominated disk

Heating vs cooling (GASPLR)

Radiation pressure dominated disk

Stability curve

Mishra et al 16

Hydrostatic balance

Unstable disk RADPHR

RADPHR, disk collapse

Radial profile of Height

Vertical density profile

Heating vs cooling (RADPHR)

Heating vs mid-plane total pressure

Cooling vs mid-plane pressure

GASP vs RADP

Stable

Unstable

Viscous Instability

Viscous Instability

Conclusions

- Radiation pressure dominated disks are thermally unstable
- Still need more computational power to well resolve these simulations
- In my knowledge, first evidences of viscous instability in numerical simulations

Thank you !