Looking for Intermediate Mass Black Holes in the center Low Luminosity AGN

F.K.^{1,2,}, Bogdan Ciambur³, Burcin Mutlu⁴, Mickael Coriat^{1,2}, Olivier Godet^{1,2}, Alister Graham³, Marc Seigar⁵, Ben Davis³ and Natalie Webb^{1,2}

- ¹ Universite de Toulouse; UPS-OMP; IRAP
- ² CNRS, IRAP
- ³ CAS, Swinburne University of Technology
- ⁴ University of Minnesota, Twin Cities
- ⁴ University of Minnesota, Duluth

Speaker: Filippos Koliopanos

Breaking the limits 2016

Intermediate Mass Black Holes

- Existence of **galactic BH**s (<10²M_{sol}) and **supermassive BHs** (>10⁵M_{sol}) is firmly established.
 - Notable scarcity in the **intermediate** range.
 - Do IMBHs exist?

NASA, Ligo

X-ray - NASA, CXC, R.Kraft (CfA), et al.; Radio - NSF, VLA, M.Hardcastle (U Hertfordshire) et al.; Optical - ESO, M.Rejkuba (ESO-Garching) et al.

Why do we care?

- Predicted by plausible scenarios
 - Evolution of Pop III stars
 - BH mergers in clusters
 - They are the likely **Seeds** of SMBHs (?)
 - Probe galaxy **formation** in different mass regimes

NASA, Ligo

X-ray - NASA, CXC, R.Kraft (CfA), et al.; Radio - NSF, VLA, M.Hardcastle (U Hertfordshire) et al.; Optical - ESO, M.Rejkuba (ESO-Garching) et al.

Measuring the Black Hole Mass

X-ray and Radio:

- Are they accreting mass ?
 - Eddington Luminosity (L~1.3 10³⁸M/Msol)
 - Can be exploited to uncover **IMBHs**: HOWEVER: Super Eddington Accretion. M82 X-2 But, ESO 243-49 HLX-1 and M82 X-1(?).
 - Fundamental Plane of BH activity

- Scale-invariance of disk-jet mechanism.
- Estimate masses from GBHs to AGN.
- Large inherent scatter.

Breaking the limits 2016 - F.Koliopanos

Measuring the Black Hole Mass

BH mass and Galactic properties

- The $M_{\text{вн}}$ - σ relation
 - Direct mass measurement HOWEVER:
 - Low mass -> Small sphere of influence.
 - Luminosity bias.

• The **М**вн-**L** relation

- Can be applied on more distant sources
- No spectroscopy required
- Depends on distance estimation

• The Мвн-nsph and Мвн-PA relation

- Independent of distance and of other relation
- Empirical relations. Underlying physics not yet fully established
- Limited to low z.

 $M_{\rm BH} \; [{\rm M}_\odot]$

Looking for IMBHs in LLAGN

- Motivation: MBH-L relation by Graham & Scott (2013), reveals 40 IMBHs in LLAGN.
 - Мвн-L revised by Savorgnan et al. (2016)
 - LLAGN most likely have low mass central BH
 - We aim to confirm **IMBH** candidates and inspect the validity of **М**вн-**Galactic properties relations** in the **low mass regime**.

• Our sample: 7 LLAGN from the GS13 list.

- Multiple high res, X-ray obs. (Chandra, XMM-Newton)
- Proprietary VLA, radio observations
- IR, high res, Spitzer, HST observations
- Optical obs. from: Vatt, Palomar 48-inch Schmidt, SDSS, KPNO, Bok Telescope, JKT.

• Our approach: Multiple methods – state of the art tools.

- Мвн-L relation (Savorgnan et al. 2016)
- Мвн-**п**sph relation (Savorgnan 2016)
- Мвн-РА relation (Berrier 2013)
- **Fundamental plane** of BH activity (Plotkin et al. 2012)

Data analysis

Multiple X-ray observations

- All sources fitted with absorbed power-law consistent with GBH "hard state".
- No significant flux variability

• IR analysis - Morphological decomposition

- Masking contaminating sources
- Decompose photometric components disc, bulge, bar, point-source, etc
- State of the art tools: profiler, isophote (Ciambur 2015, 2016)

• Spiral arms analysis

- Images **deprojected** to face-on
- 2-D Fast Fourier Transform
- Harmonic mode corresponding to constant PA over largest range of Rin

Results

Breaking the limits 2016 - F.Koliopanos

Conclusions

- None of the sources in our sample are **IMBHs**
- The GS13 "broken" Мвн-Lsph relation underestimates the Black hole mass.
- The revised Мвн-Lsph relation, correctly estimates BH masses

- We demonstrate for the first time that the different scaling relations are consistent in the low mass regime.
- Our multiple-method approach CAN be used to discover IMBHs, in LLAGN and dwarf galaxies with low luminosity bulges.
- We expect ~8 sources in the GS13 list to lie in the IMBH range. Their analysis will be the next step in this ongoing project