EXPLORING THE SPECTRAL PROPERTIES OF HIGHLY ACCRETING QUASARS AT HIGH REDSHIFT

Mary Loli Martínez-Aldama¹ · Alenka C. Negrete² · Ascensión del Olmo¹ · Paola Marziani³ · Jack Sulentic¹ · Deborah Dultzin²

¹Instituto de Astrofísica de Anadalucía–CSIC, Spain

²Instituto de Astronomía–UNAM, Mexico

³Osservatorio Astronomico di Padova–INAF, Italy

4D Eigenvector 1: an evolution diagram for type 1 AGN

The **4D Eigenvector 1 (4DE1**:Boroson & Green 1992; Sulentic+ 2000; Marziani+ 2001, 2003; Sulentic+ 2007, 2010, 2014) is a spectroscopic unifier/discriminator of the emission lines properties for type 1 AGN. It is based on four parameters:

1) FWHM(H β_{BC}): prototype of LILs

- 2) $R_{Fe II} = W(Fe II \lambda 4570)/W(H\beta_{BC})$
- 3) Γ_{soft} : spectral index of soft X-ray

4) CIV λ 1549 blueshift: prototype of HILs

4D Eigenvector 1: an evolution diagram for type 1 AGN

Along the 4DE1, we can find a change in the spectral properties of the AGN, suggesting the existence of two kind of populations: **A** and **B**

4D Eigenvector 1: an evolution diagram for type 1 AGN

Furthermore, the 4DE1 sequence we can find a variation of the physical parameters and in the orientation. Then, the 4D Eigenvector 1 could be considered as a **"HR diagram"** for type 1 quasars (Sulentic, Marziani & Dultzin 2000, Zamfir+ 2010).

These results were confirmed by Shen & Ho (2013) using the SDSS data.

Highly accretors AGNs along the 4DE1

Considering several UV and optical samples (Bachev+ 2004; Marziani+ 2003, 2009; Negrete+ 2012, 2013; Sulentic+ 2004, 2007, 2014), we have identified the properties for the highly accretors AGNs. They are located in the **extreme population A region**.

Marziani & Sulentic (2014)

GTC highly accretors sample

Using the **OSIRIS** spectrograph mounted in the **Gran Telescopio Canarias (GTC)**, we observed a sample of highly accretor quasars (~50 sources), which were selected with the **UV** criteria proposed by 4DE1.

	1	ľ.	
QSQ	Z	Lines used	
SDSSJ021606.41+011509.5	2.223585	QI+SIII,CII	Extreme population A sources
SDSSJ222753.07-092951.7	2.163938	CII, Lya	2.0
SDSSJ000807.27-103942.7	2.466034	QI+Sill,CII, Lya	
SDSSJ143525.31+400112.2	2.261532	QI+SIII,CII	$\frac{\text{AI III } \lambda 1860}{\text{Si wl } \lambda 1892} \ge 0.5$
SDSSJ110022.53+484012.6	2.079899	Si 11264, <u>OI+Sill</u>	
SDSSJ024154.42-004757.5	2.391897	Si II1264, <u>QI+SiII, CII</u>	1.5
SDSSJ101822.96+203558.6	2.250155	Si 11264, <u>QI+Sill</u>	
SDSSJ151258.36+352533.2	2.238270	QI+Sill, CII	
SDSSJ214009.01-064403.9	2.080758	Si II1264, <u>QI+SiII, CII</u>	
SDSSJ125659.79-033813.8	2.980083	<u>QI+Sill</u>	
SDSSJ105806.16+600826.9	2.940572	QI+SIII,CII	
SDSSJ103527.40+445435.6	2.263917	<u>OI+Sill</u>	
SDSSJ084036.16+235524.7	2.184233	<u>OI+Sill,CII</u>	• •
SDSSJ004241.95+002213.9	2.056166	QI+SIII,CII	0.5
SDSSJ131132.92+052751.2	2.123420	QI+Sill, CII	-
SDSSJ144412.37+582636.9	2.345544	Si 11264, <u>OI+Sill</u>	2000 4000 6000 8000
SDSSJ234657.25+145736.0	2.170262	Sill1264, <u>Cll</u>	FWHM(Al III)
SDSSJ220119.62-083911.6	2.183952	Allul, CIU, SILLI	
SDSSJ233132.83+010620.9	2.627299	Alui, Ciu, Silli	

Some examples: strong blueshifted CIV component

Some examples: Broad Absorption Line QSO

Multicomponents fits

Following the 4DE1 context we performed multicomponents fit to separate the different contributions.

Blend 1900: 1700-2150 Å

- Al III] λ1860

Multicomponents fits: CIV $\lambda 1549$

Multicomponents fits: CIV $\lambda 1549$

CIV region: 1500-1700 Å

- C IV λ 1549: BC+Blueshift (2)
- He II λ 1640: BC+Blueshift (2)
- OIII] λ 1664 + Al II λ 1670

- N IV λ1486

CIV λ 1549 outflows

If we compare the contribution of the CIV λ 1549 blue component respect to the total contribution, we find a contribution of more than 40% for the 65% of the sources.

Photoionization method

Considering the flux ratios of the UV lines, we can determined U and n_{H} using a photoionization models. And then, getting the size of the Broad Line Region, r_{BLR} (Negrete+ 12,13,14).

CLOUDY (Ferland+ 2013) input conditions:

- Mathews & Ferland continuum (1987)
- Nc=10²³⁻²⁵ cm⁻²
- 1Z_o, 5Z_o
- $-4 \le \log(U) \le 0$

 $-9 \le \log(n_{_H}) \le 14$

Broad Line Region size

Considering a small high-z sample but not highly accretor (Negrete+ 2012, 2013), we find that the tendence previously found for the r_{BLR} size is in agreement with our results adn the BLR radii is smaller than the computing wih the RM methods.

Black hole mass determination

Computing the black hole mass using r_{BLR} the found, we get that the mass obtained from the photoionization models (GTC+FORS) is slighly higher than the obtained from reverberation mapping.

CIV λ 1549 outflows and the Eddington ratios

Considering two samples (FORS VLT+HE) with Pop. A and B soures (Marziani & Sulentic 2014; Sulentic+ 2004, 2006, 2007; Marziani+ 2009), we find a strong tendence to the Pop. A sources to show CIV outflows, specially the at **GTC sample**.

CIV $\lambda 1549$ outflows and the Eddington ratios

Moreover, the Pop. A sources tend to show high luminosities and Eddintong ratios.

- 4DE1 criteria are good in the selections of highly accretor quasars (type 1 AGNs)
- Blueshift components contribute more than 40% of the flux in 65% of our sources

- BLR radii computed with the photoionization method are somewhat smaller than the radii derived from reverberation maping scaling laws. And then, the black hole mass is larger.

- We confirm that these sources show a tendence to have high Eddington Ratios