Super-Eddington accretion luminosity of highly magnetized neutron stars

> Alex Mushtukov, <u>Valery Suleimanov</u> Sergey Tsygankov, Juri Poutanen

Breaking The Limits

Super-Eddington accretion on compact objects. September 22, 2016, Arbatax (OG), Italy

Super-Eddington X-ray pulsars X-2 Pulsing ULX M82 X-2 (Bachetti et al. 2014) L≈10⁴⁰ erg s⁻¹, P≈1.37 s Other pulsing ULX ! See Israel's talk Eddington luminosity $L_{Edd} = \frac{4\pi GMc}{0.2(1+X)} \approx 1.4 \cdot 10^{38} \frac{M}{M_{\odot}}$ erg s⁻¹ 0.2(1+X)= κ_{T} - electron scattering opacity, X \approx 0.74 – hydrogen mass fraction Many transient X-ray pulsars have higher luminosities during giant (type II) outbursts LMC X-4 - up to $2 \cdot 10^{39}$ erg s⁻¹ in flares (Moon et al. 2003);

LMC X-4 - up to $2 \cdot 10^{39}$ erg s⁻¹ in flares (Moon et al. 2003); SMC X-1 \approx 7 \cdot 10³⁸ erg s⁻¹ (Naik & Paul 2004); A0538-66 up to 8 \cdot 10³⁸ erg s⁻¹ (Maraschi et al. 1983); GRO J1744-28; V0332+53 etc.

(Tsygankov et al. 2016)

Super-Eddington fluxes.

Super-Eddington fluxes.

Models: Some previous works

Radiation supported accretion column Main assumptions on the base of Lubarsky & Sunyaev 1988 and Basko & Sunyaev 1976 h Vertical direction Hydrostatic equilibrium $F_{II}(h) = F_{Edd}(h), P_{tot} \approx P_{rad} \approx \frac{\varepsilon_{rad}}{3} = \frac{aT^4}{3}$ $\frac{dP_{rad}(h)}{n} = -\rho \frac{\kappa_{II}F_{Edd}(h)}{\kappa_{II}F_{Edd}(h)}$

dh

optically thick structure

Horizontal direction opacities Radiation transfer $\frac{d\varepsilon_{rad}(x,h)}{dx} = -3\rho \frac{\kappa_{\perp}F_{\perp}(h)}{c} \frac{2x}{d}$

magnetic

Radiation supported accretion column Toy model: Constant density.

Vertical direction

Hydrostatic equilibrium

$$\varepsilon_{rad}(0,h) \approx 3 \frac{\tau_{II}}{c} F_{Edd}(h)$$

Horizontal direction Radiation transfer factor $F_{\perp}(h) \approx \frac{2c \ \varepsilon_{rad}(0,h)}{3 \ \tau_{\perp}} \approx 2 \frac{\tau_{II}}{\tau_{\perp}} F_{Edd}(h)$

Radiation supported accretion column Toy model: Constant density.

$$F_{\perp}(h) \approx 2 \frac{\tau_{II}}{\tau_{\perp}} F_{Edd}(h)$$

Integration over the surface

$$L \approx 40 \left(\frac{l/d}{50}\right) \left(\frac{\kappa_T}{\kappa_{\!\scriptscriptstyle \perp}}\right) f(H/R) \; L_{Edd}$$

$$L^{**}(H=R) \approx 2 \times 10^{39} \left(\frac{l/d}{50}\right) \left(\frac{\kappa_T}{\kappa_{\perp}}\right) \text{ erg s}^{-1}$$

 $H(x) \approx H\left(1 - 4\frac{x^2}{d^2}\right)$ approximate parabolic shape

Magnetic opacities

Magnetic opacities

Averaging over thermal spectrum is important

$$kT \ge E_C \quad \Longrightarrow \quad \kappa_{\!\!\!\perp} \approx \kappa_T$$

Accretion geometry importance Low luminosity. Gas pressure dominated disc.

Numerical (pseudo) one-dimensional model. Final assumptions.

Aim is to find the column height H which corresponds to given L

Iteration scheme, because κ_{\perp} depends on temperature T

Numerical (pseudo) one-dimensional model. Some results.

Higher NS magnetic field strength $B \rightarrow$ less opacity κ_{\perp} and optical thickness $\tau_{\perp} \rightarrow$ higher effective temperature T_{eff} less column height at the same luminosity or higher luminosity at the same column height

Maximum possible luminosities vs. B

Application to M 82 X-2

Possible propeller effect in M 82 X-2 Tsygankov et al. 2016

Transitions due to propeller effect at $R_m = R_{CO}$?

Conclusions

Our simplified model can qualitatively explain 10^{40} high luminous X-ray pulsars existence with luminosities up to 10^{40} erg s⁻¹ typical for M82 X-2 assuming high magnetic field strength ($10^{14} - 10^{15}$ G). 10^{36}

Possible luminosity transitions in M82 X-2 due to propeller effect confirm B $\sim 10^{14}$ G (Tsygankov et al. 2016).

Accretion geometry is very important and cannot be correctly included at the moment. There is potential possibility for maximum luminosities increasing due to geometry effects.

Outlook

Introduction. Super-Eddington X-ray pulsars. Magnetic field importance. Super-Eddington fluxes. Accretion columns. Basic ideas. Maximum possible luminosities. Conclusions.

Magnetic opacities

Description of the radiation transfer using two normal modes

