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¢ The most energetic explosion in the universe
e GRBs are classified depending on gamma-ray emission time

v Short GRB ( £2s) — Compact star binary merger
— Collapsing massive star

e A broken-power-law spectrum is observed
¢ Detailed emission mechanism is unknown
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Numerical reproduction of GRB spectrum
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e Radiative transfer computations
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Jet structure develops | (ajoy+ 2000, Mizuta+ 2006, Nagakura+ 2011)
- inhomogeneously

Radiative transfer computation
should be implemented on
unsteady background

Coupled computation of radiative transfer
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3



Coupled computation

Relativistic Hydrodynamics

Feedback from interaction Background
of matter with radiation flowfield

Radiative Transfer

Requirements for coupled computation in GRB
e Ultra-relativistic flow velocity (Lorentz factor I > 100)

e Strongly anisotropic radiation
e Radiation mediated shock (A. Levinson 2008, R. Budnik 2010)

Previous works
e Coupled computation of Monte Carlo radiative transfer (MCRT) with

relativistic hydrodynamics
(N. Roth and D. Kasen 2015, A. M. Beloborodov 2016)

e Appropriate simulation conditions of MCRT with ultra-relativistic hydro

were examined (Ishii+ 2015, Ishii+2016 (submitted))
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Objectives

Reproducing GRB emission spectra by coupled computation

Preliminary for coupled computation...
Shock steepness
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Numerical method

Radiative transfer equation including scattering
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Computed in comoving frame
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Every photons are put

behind the shock initially SlmUIathn COndrthn

(108 sample particles)
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® Photons are tracked with a moving discontinuous or smeared
shock wave, and sampled at the right boundary

e The shock front is artificially smeared in density distribution
(pmax @nd pmin Satisfy Rankine-Hugoniot relations)

e Flow velocity is determined by the equation of continuity
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Every photons are put

behind the shock initially SlmUIathn COndrthn

(108 sample particles)
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® Photons are tracked with a moving discontinuous or smeared
shock wave, and sampled at the right boundary

e The shock front is artificially smeared in density distribution
(pmax @nd pmin Satisfy Rankine-Hugoniot relations)

e Flow velocity is determined by the equation of continuity
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Spectra with different shock widths
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e High-energy component decreases as shock width increases

¢ |nthe smeared shock, energy gain by inverse Compton
scattering process decreases due to small velocity jump
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Spectra with different emitted positions

Set up of emitted positions with t
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e High-energy component decreases as initial emitted position
becomes deep in optical depth

e With large t, photons undergoing inverse Compton scattering
decreases since photons hardly travel across the shock front
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Overlapping spectra with different t
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Spectra with photon emitted position of Tt =2 - 2.06 are overlapped

B value approaches the observational one with extended shock front
Hydro simulation may produce such a widely smeared shock front by

—appropriate simulation conditions are required for precise prediction
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Summary

Effect of shock steepness and photon initial emitted position
on radiative transfer computation has been examined

¢ High-energy component of spectra decreases as shock
width increases

e High-energy component decreases as initial emitted
position becomes deep in optical depth

e The B value approaches the observational one with widely
smeared shock front

Future works

¢ Coupled computation of MCRT with 1D relativistic Lagrangian hydro
e Computing radiation mediated shock structure

e Examining the effect of radiative mediated shock structure on the
emitted spectra
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