Breaking the Limits 2016 Arbatax Park Resort September 23, 2016

Coupled Computation of Radiative Transfer with Relativistic Hydrodynamics Relevant to GRB Emission Process

Ayako Ishii (Tohoku University)

http://www.astroarts.co.jp/news/2013/08/08grb/index-j.shtml

Naofumi Ohnishi (Tohoku Univ.) Hiroki Nagakura (Caltech) Hirotaka Ito (RIKEN) Shoichi Yamada (Waseda Univ.)

Gamma-ray burst (GRB)

- The most energetic explosion in the universe
- GRBs are classified depending on gamma-ray emission time

 $α \sim -1$, $β \sim -2.5$

✓ Short GRB (≤ 2 s) → Compact star binary merger ✓ Long GRB (≥ 2 s) → Collapsing massive star

- A broken-power-law spectrum is observed
- Detailed emission mechanism is unknown

Numerical reproduction of GRB spectrum

Coupled computation

Requirements for coupled computation in GRB

- Ultra-relativistic flow velocity (Lorentz factor $\Gamma\gtrsim$ 100)
- Strongly anisotropic radiation
- Radiation mediated shock (A. Levinson 2008, R. Budnik 2010)

<u>Previous works</u>

- Coupled computation of Monte Carlo radiative transfer (MCRT) with relativistic hydrodynamics (N. Roth and D. Kasen 2015, A. M. Beloborodov 2016)
- Appropriate simulation conditions of MCRT with ultra-relativistic hydro were examined (Ishii+ 2015, Ishii+2016 (submitted))

Objectives

Preliminary for coupled computation...

Numerical method

Radiative transfer equation including scattering

$$\left(\frac{1}{c}\frac{\partial}{\partial t} + \mathbf{\Omega}\cdot\nabla\right)I = j + \frac{\rho}{4\pi}\int\int\sigma I\phi d\nu' d\mathbf{\Omega}' - [k+\sigma]\rho I$$

Computed in comoving frame

- Photons are tracked with a moving discontinuous or smeared shock wave, and sampled at the right boundary
- The shock front is artificially smeared in density distribution (ρ_{max} and ρ_{min} satisfy Rankine-Hugoniot relations)
- Flow velocity is determined by the equation of continuity

- Photons are tracked with a moving discontinuous or smeared shock wave, and sampled at the right boundary
- The shock front is artificially smeared in density distribution (ρ_{max} and ρ_{min} satisfy Rankine-Hugoniot relations)
- Flow velocity is determined by the equation of continuity

Spectra with different shock widths

- High-energy component decreases as shock width increases
- In the smeared shock, energy gain by inverse Compton scattering process decreases due to small velocity jump

Spectra with different emitted positions

- High-energy component decreases as initial emitted position becomes deep in optical depth
- With large τ , photons undergoing inverse Compton scattering decreases since photons hardly travel across the shock front

Overlapping spectra with different τ

- Spectra with photon emitted position of $\tau = 2 2.06$ are overlapped
- β value approaches the observational one with extended shock front
- Hydro simulation may produce such a widely smeared shock front by numerical diffusion
 - →appropriate simulation conditions are required for precise prediction

Summary

- Effect of shock steepness and photon initial emitted position on radiative transfer computation has been examined
 - High-energy component of spectra decreases as shock width increases
 - High-energy component decreases as initial emitted position becomes deep in optical depth
 - The β value approaches the observational one with widely smeared shock front
- Future works
 - Coupled computation of MCRT with 1D relativistic Lagrangian hydro
 - Computing radiation mediated shock structure
 - Examining the effect of radiative mediated shock structure on the emitted spectra Thank you for your attention !